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SUMMARY

An innovative computational model is presented for the large eddy simulation of multi-dimensional
unsteady turbulent flow problems in complex geometries. The main objectives of this research are
(i) to better understand the structure of turbulent flows in complex geometry and (ii) to investigate the
3D characteristics of such complex fluid flow. The filtered Navier–Stokes equations are used to simulate
large scales of the turbulence, while the energy transfer from large scales to subgrid-scales (SGS) is
simulated using dynamical mixed one-equation subgrid models. In the proposed SGS model, the SGS
kinetic energy, ksgs, is used for scaling the velocity for the eddy-viscosity part of the model. The proposed
SGS model contains not only some information on the small scales as described in traditional Smagorinsky
model or Germano dynamical model but also includes additional scale-similarity as that in the models
of Ghosal et al. (J. Comput. Phys. 1995; 118:24–37) or Davidson (11th International Symposium on
Turbulent Shear Flow, Grenoble, vol. 3, 1997; 26.1–26.6). The Navier–Stokes equations and the derived
ksgs equation are solved using implicit finite-volume method. The models have been applied to simulate
the 3D flows over a backward-facing step and in a strong 3D skew runner blade passage of a Francis
hydro turbine, respectively. Good agreement between simulated results and experimental results as well
as other numerical results was obtained. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent flows are of great practical interest in many environmental and engineering fields and
may be defined as a 3D flow with highly disordered, intermittent and rotational fluid motion and
with diffusive and dissipative characteristics. Owing to its practical importance, extensive studies
have been carried out and some reliable results have been obtained [1–4].

Many numerical techniques, such as Direct Numerical Simulation (DNS), Large Eddy Simulation
(LES) and Reynolds Averaged Navier–Stokes (RANS), have been applied for the simulation of
turbulence flows. DNS can give the most accurate simulation results. However, for flows with
high Reynolds numbers, where the influence of the different turbulence scales must be taken into
account, it is difficult to apply DNS due to the enormous requirement for computational resources
and unknowns involved in the computational solution. So far, DNS is only suitable to be used
for simulating the low Reynolds number flow with relative simple flow passage. RANS models
are often used to simulate the turbulent flows in many industrial fields. This approach is based
on the separation of the instantaneous value of a specific flow variable in its mean value and
fluctuations with respect to this mean value. The well-known Reynolds stress components are
originated substituting mean values and fluctuations of the variables in the conservation equations.
However, RANS model induces more unknowns than equations, thus, various turbulence models
are developed to describe the Reynolds stress components and to close the equations. These closure
models contain many empirical parameters that are determined from specific examples, thus the
application of RANS is limited.

LES is currently a popular tool for the simulation of turbulence flows. This methodology was
initially proposed by Smagorinsky [5], and it consists of the separation of the large eddies and
subgrid-scales (SGS) using a grid filter. Large eddies are associated with the low flow frequencies
and are originated by the domain geometry and the boundaries. SGS are associated with the high
frequencies and have an isotropic and homogeneous behavior, and can maintain their independence
with respect to the main stream. In LES the large eddies are simulated directly, whereas SGS
are simulated using closure models. This approach shows that it can significantly improve the
computational accuracy compared with RANS while keeping the computational cost relatively
lower compared with DNS.

The energy transfer between large and small scales is mainly between the scales closest to
the cut-off. The scale-similarity models [6] are established based on this argument. These models
use the correlation between the smallest resolved scales and the largest unresolved scales in
LES to model the main part of the SGS energy. They are always used together with some
dissipative model such as the Smagorinsky model, e.g. the mixed models. In early simulations
using mixed models [6, 7], the constant in the Smagorinsky model was prescribed a priori. The
dynamical SGS model was developed by Germano et al. [8] and Lilly [9]. However, the velocity
scales in their model only contain the information for the large scales. Zang et al. [10] used
this model in the dynamic mode to simulate recirculation flows. The SGS model is capable of
covering a large part of the turbulent kinetic energy to make LES a practical tool for complex
flows at high Reynolds numbers. Though a large part of the SGS energy is modeled with the scale-
similarity approach, a significant amount of the SGS energy in a coarse LES is still simulated using
the Smagorinsky model [11]. The Smagorinsky model assumes the isotropy of the small scales.
Obviously this model is not suitable for modeling a significant part of the SGS energy resulting
from the scales with obvious anisotropic characteristics. It does not contain any information on
the SGS energy. The SGS velocity scale of the Smagorinsky model, |S̄|=(2S̄i j S̄i j )1/2, is strongly
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affected by the mean flow. On the other hand, the smallest unresolved scales are assumed not
to be correlated with the large scales. It is apparent that a more suitable model containing some
information about the SGS energy is needed for modeling the smallest SGS scales in turbulence
flows.

This paper presents a mixed dynamic model in which the SGS kinetic energy model is used as
a dissipative part in the model. The dynamic models based on the ksgs proved to give an accurate
representation of the unresolved scales in a coarse LES [12–17]. They are more robust than the
Germano’s model and allow transfer of turbulent energy from small to large scales. Furthermore,
the velocity scale, k1/2sgs , in the mixed models contains some information on the small scales, and the
solution of the transport equations for ksgs contributes to a history effect in the model. It has been
shown that the model is Galilean invariant and realizable. Moreover, the approximately correct
near-wall behavior of the model has been proven [18]. The model was tested for both channel flow
and for the case of a surface-mounted cube, it was found that the model gave accurate results for
both cases [19].

Though LES has been successfully applied to simulate the turbulence flows with complex geom-
etry [20–22], relatively few studies have been reported using LES for simulating the flow in a
strong three-dimensional (3D) skew Francis hydro-turbine passage. A few studies of DNS and LES
of fully turbulent flow in a low pressure turbine passage have been done, only for two-dimensional
(2D) blade cascade simplifications [23–25]. As an important turbo-machinery for electricity gener-
ation by water power, the coming flow at a high velocity, with strongly distorted wakes due to stay
and guide vanes, passes through the blade passage at the entrance with an angle of attack. The high
curvature walls enforce the flow to change direction, inducing a quite complicated non-uniform and
unsteady turbulent flow. So far, numerical simulations of the turbulent flows in the strong 3D skew
blade passage for a Francis turbine have mostly been done based on the k−ε models of RANS
for engineering purpose, the mechanisms and the spatial and temporal distributions of turbulence
flow in the passage are hardly known. In this paper, we use LES with the dynamical mixed one-
equation subgrid models to simulate the complex 3D turbulent flow in a highly curved turbine
passage.

2. GOVERNING EQUATIONS

2.1. Description of dynamical mixed one-equation subgrid model

The system of equations to simulate turbulent flows of Newtonian incompressible fluids are given by

�u j

�x j
=0 (1)

�ui
�t

+ �
�x j

(uiu j )+ 1

�

�p
�xi

− �
�x j

[
�

(
�ui
�x j

+ �u j

�xi

)]
=0 (2)

where ui and p are the velocity components and pressure, respectively. � is the molecular kinetic
viscosity.
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Applying a grid filter to the continuity and momentum equations, respectively, the following
filtered expressions for a Newtonian incompressible fluid are obtained:

�ū j

�x j
=0 (3)

�ūi
�t

+ �
�x j

(ūi ū j )+ 1

�

� p̄
�xi

− �
�x j

[
�

(
�ūi
�x j

+ �ū j

�xi

)
−�i j

]
=0 (4)

where ūi and p̄ are the filtered velocity components and pressure, respectively. The SGS stress
tensor,

�i j =uiu j − ūi ū j (5)

is modeled as

�Mi j =�SSi j +�EVi j (6)

Here, the scale-similarity part of the SGS stress tensor is modeled as

�SSi j = ūi ū j − ¯̄ui ¯̄u j (7)

and the eddy-viscosity part is modeled as

�EVi j =−2C(x, y, z, t)�k1/2sgs S̄i j + 2
3�i j ksgs (8)

where C(x, y, z, t) is a space and time-dependent coefficient, �i j is Kronecker’s delta, S̄i j is the
strain-rate tensor on the grid level. Instead of using the velocity scale |S̄|, which is common practice
in the dynamic models, we use k1/2sgs as the velocity scale. The advantage for using k1/2sgs as velocity
scale is that the information from the small scales is included in the SGS model through ksgs.

Subtracting the product of ūi and Equation (4) from the filtered product of ui and Equation (2)
yields:

ui
�ui
�t

− ūi
�ūi
�t

+ui
�

�x j
(uiu j )− ūi

�
�x j

(ūi ū j ) = −1

�

(
ui

�p
�xi

− ūi
� p̄
�xi

)

+�ui
�2ui

�x j�x j
−�ūi

�2ūi
�x j�x j

+ ūi
��Mi j
�x j

(9)

Assuming that the resolved and the SGS kinetic energy are

k̄= 1

2
ūi ūi , ksgs= 1

2
�EVi i (10)

The total kinetic energy can then be modeled as

k= k̄+ksgs+ 1
2�

SS
i i (11)
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Substituting Equations (10) and (11) into Equation (9) and rearranging the equation gives

�ksgs
�t

+ �
�x j

(ū j ksgs) = −�Mi j
�ūi
�x j

− �
�x j

(
1

2
uiuiu j −kū j + 1
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i j
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�x j�x j
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(
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The SGS diffusion terms in Equation (12) are modeled as

D=− �
�x j

(
1

2
uiuiu j −kū j + 1

�
u j p− 1

�
ū j p̄− ūi�

M
i j

)
= �

�x j

(
�sgs

�ksgs
�x j

)
(13)

The dissipation in Equation (12) can be modeled as

εksgs=�

(
�ui
�x j

�ui
�x j

− �ūi
�x j

�ūi
�x j

)
=Cε

k3/2sgs

�
(14)

The production term in Equation (12), i.e. the SGS dissipation of the resolved kinetic energy, can
be modeled as

�=−�Mi j
�ūi
�x j

=�SS+�ksgs=−�SSi j
�ūi
�x j

−�EVi j
�ūi
�x j

(15)

Substitution of Equations (13)–(15) into Equation (12) gives the control equation of the SGS
kinetic energy

�ksgs
�t

+ �
�x j

(ū j ksgs) = �ksgs+ �
�x j

(
(�sgs +�)

�ksgs
�x j

)
−Cε

k3/2sgs

�

+�SS+�
�2

�x j�x j

(
1

2
�SSi i

)
− �

�t

(
1

2
�SSi i

)
− �

�x j

(
1

2
�SSi i ū j

)
(16)

Before we can use Equation (16) to simulate the SGS kinetic energy, two important coefficients
in Equation (16), i.e. the SGS turbulent viscosity �sgs and the SGS dissipation coefficient Cε need
to be defined and solved.

The coefficient, C(x, y, z, t), is computed using a dynamic procedure. To this end, we need
to define some quantities on the trail test level. Introducing ·̂ as a test-filter with a filter with of
�̂=2�, the SGS stress on the test level can be written as Ti j = ûi u j − ˆ̄ui ˆ̄u j . Similar to �SSi j and

�EVi j , T SS
i j and T EV

i j are introduced, respectively, as the scale-similarity and the eddy-viscosity parts

of the modeled SGS stress on the test level, T M
i j , i.e.

T M
i j =T SS

i j +T EV
i j = ûi u j − ˆ̄ui ˆ̄u j (17)
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T SS
i j and T EV

i j are modeled as

T SS
i j = ̂̄ui ū j − ˆ̄̄ui ˆ̄̄u j (18)

T EV
i j =−2C(x, y, z, t)�̂K 1/2 ˆ̄Si j + 2

3�i j K (19)

where the strain-rate tensor on the test level, ˆ̄Si j , is defined as

ˆ̄Si j = 1

2

(
� ˆ̄ui
�x j

+ � ˆ̄u j

�xi

)
(20)

The SGS kinetic energy on test level, K , is defined as K = 1
2T

EV
i i .

Applying the Germano identity, i.e.

Li j =̂̄ui ū j − ˆ̄ui ˆ̄u j =Ti j − �̂i j (21)

substitution of the modeled SGS stress on the test level, T M
i j , and the modeled SGS stress on the

grid level, �Mi j , into Equation (21), gives

Li j −Hi j =2C(x, y, z, t)Mi j (22)

where

Hi j =( ¯̂̄ui ¯̄u j − ˆ̄̄ui ˆ̄̄u j ) (23)

Mi j =�
̂

k1/2sgs S̄i j −�̂K 1/2 ˆ̄Si j (24)

The square error, Ei j Ei j =(Li j −Hi j −2C(x, y, z, t)Mi j )
2, is minimized to obtain [9]

C(x, y, z, t)=−1

2

(Li j −Hi j )Mi j

Mi j Mi j
(25)

The computation reveals that the local coefficient C(x, y, z, t) often yields a highly oscillating
eddy-viscosity field including a significant partition with negative values, which destabilizes the
numerical calculation. To this end, a homogeneous coefficient Chom(t) is often used in the practical
simulations. Chom(t) is computed with the requirement that the SGS dissipation of the resolved
kinetic energy in the whole computational domain remains the same as with the local coefficient
C(x, y, z, t), i.e.

〈2C(x, y, z, t)�k1/2sgs S̄i j S̄i j 〉xyz =2Chom(t)〈�k1/2sgs S̄i j S̄i j 〉xyz (26)

where 〈·〉xyz denotes space averaging over the entire domain.
Chom(t) is used to define the SGS turbulent viscosity, �sgs

�sgs =Chom(t)�k1/2sgs (27)

in Equation (16) and in the momentum equations.
In RANS, Rodi [26] proposed that the convective and diffusive transport of uiu j is proportional

to that of k with the proportionality coefficient being uiu j/k. Following this approach, we use
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a similar assumption to calculate the dissipation coefficient, Cε, in Equation (16). Assuming that
the convective and diffusive transport of the SGS kinetic energy on the grid filter level, ksgs, is
proportional to that of the SGS kinetic energy on the test-filter level, K with the proportionality
coefficient ksgs/K . Since

CK +DK =�K −�SS
K −εK (28)

Ĉksgs + D̂ksgs
=�̂ksgs −�̂

SS− ε̂ksgs (29)

with the convection terms CK and Cksgs and the diffusion terms DK and Dksgs , we obtain (note
that the scale-similarity terms have been absorbed in the convection and diffusion terms)

ksgs
K

(�K +�SS
K −εK )=�̂ksgs

+�̂
SS− ε̂ksgs (30)

where,

�K =−T EV
i j

ˆ̄Si j , �SS
K =−T SS

i j
ˆ̄Si j , εK =Cε

K 3/2

�̂
(31)

Thus, we have

Cn+1
ε =

⎡⎣�K +�SS
K − ksgs

K

⎛⎝�̂ksgs
+�̂

SS−
̂

Cn
ε

k3/2sgs

�

⎞⎠⎤⎦ �̂

K 3/2
(32)

where Cn+1
ε denotes the dissipation coefficient for time step n+1. The requirement of non-negative

viscous dissipation by definition yields Cε�0.

2.2. Numerical method

An implicit finite-volume method is used for solving the incompressible Navier–Stokes equations
and modeled ksgs equation. The viscous plus subgrid fluxes are approximated by central differences
of second-order accuracy and the convective term is discretized using the scheme of second
order upwind. To compare the dissipative effect of the numerical method, the scheme of central
differences is also applied to discretize the convective term. The pressure–velocity coupling is
realized with the SIMPLEC algorithm. The details on the numerical method can be found in
Reference [27].

The top-hat filter is applied in this study. The grid filtering is applied implicitly through the
discretization. The explicit filtering at the test level is numerically carried out by assuming linear
variation of the variables and integrating over the test cell [10].

The source terms in the numerical solution of Equation (16) are discretized as S= Spksgs+Su
with Sp =min(b)/ksgs and Su =max(b). Here, b is the scale-similarity terms and the eddy-viscosity
production and dissipation terms in Equation (16).
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Figure 1. The computational domain.

3. NUMERICAL APPLICATIONS

3.1. 3D flow over a backward-facing step

This numerical example is used to verify the accuracy of our model and to examine the sensitivity
of the size of meshes on the simulation results. 3D flows in a backward-facing step are simulated
and analyzed. Such a flow is complex and has characteristics of layers separation, reattachment and
recirculation. One of the important characteristics is the relation between Reynolds number and
the reattachment length. This allows comparison of the results obtained in this work with previous
numerical and experimental results obtained by other researchers [28–31].

The computational domain is depicted in Figure 1, where W =8.0cm, h=0.98cm, s=1.0cm,
Xe=20cm and Xt =100cm. Figure 1 also defines the coordinate system, where the x-, y-, and
z-coordinate denote the streamwise, the transverse and the spanwise directions, respectively. There
are solid walls at the top, the bottom and the two sides of the channel. Non-slip boundary conditions
were applied at the solid walls. At the channel exit only pressure was prescribed (P=0). At the
channel entrance the velocity profile corresponds to a fully developed flow, perpendicular to the
entrance plane. The inflow velocity profile is given by

U (y)= 2

3
Umax

[
1−

(
y−s−h/2

s+h/2

)2
]

(33)

where Umax is the maximum velocity.
The Reynolds number for this problem is defined as [29]

Re= 4UmaxWh

3�(W +h)
(34)

For the 3D flow, a mesh with six-faced hexahedron elements was constructed. To investigate the
effect of the size of mesh on the simulation, two calculations are carried out for the resolution
of 420×42×80 (Case 1) and 300×28×40 (Case 2) in the x , y and z directions, respectively.
Uniform meshes are used on the upstream section from the step in the streamwise direction, while
non-uniform meshes with a first/last spacing ratio �=1 :2.5 are used on the downstream section
from the step in the streamwise direction. Non-uniform meshes with a Bi-exponent distribution
are used in transverse and the spanwise directions to take into account the effects of the near wall.
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Figure 2. Comparison between measured and simulated xu-lines at y/s=0.05 (low Reynolds number flow).
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Figure 3. Comparison between measured and simulated xu-lines at y/s=0.05 (turbulent flow).

Numerical simulation of the mean streamwise velocity component (u) is carried out on planes
adjacent to the bounding walls downstream from the step (i.e. the stepped wall, the sidewall
and the flat wall). The mean streamwise locations where the velocity component is equal to
zero are determined. These locations are used to identify the xu-line distribution, defined in
the same way as in Reference [31]. Comparisons between the numerical simulation and the
measured xu-lines on a plane adjacent to the stepped wall (y/s=0.05) by Nie and Armaly [31]
are presented for both low and high Reynolds number flows in Figures 2 and 3, respectively. It
can be seen that the size of the reverse flow regions increases and moves further downstream
in the low Reynolds number flow regime, decreases and moves upstream in the transitional
flow regime, and rises up again in the turbulent flow regime as the Reynolds number increases.
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The spanwise distribution of the boundary line for the reverse flow region adjacent to the stepped
wall becomes a minimum near the sidewall in the low Reynolds number flow regime, but that
minimum in the distribution disappears in the turbulent flow regime. These figures clearly demon-
strate the behavior of these boundary lines as a function of the Reynolds numbers. Good agreement
between the numerical simulation and measurements was obtained for low Reynolds number flow,
while simulated flow field reasonably agreed with the measurements for high Reynolds number
flow, indicating that the numerical method presented here can accurately simulate the turbulent
flows with a range of Reynolds numbers. It is also seen that the size of grids has little effect on
the numerical simulation for low Reynolds number flow and has a slight influence on simulation
for flows with high Reynolds number.

3.2. The turbulent flow in a Francis hydro-turbine passage

3.2.1. Computational setup. The second numerical example is a runner blade of a test Type-A55x
Francis hydro-turbine model. The computational domain, including the distributor (a stay vane
and a guide vane) and the runner, is shown in Figure 4. The distributor domain corresponds to an
inter-blade channel that is bounded upstream by a cylindrical patch A–A and downstream by a
conical patch B–B. The distributor inlet section corresponds to the spiral casing outlet section, while
the distributor outlet section is conventionally considered to be the distributor–runner interface.
The runner corresponds to an inter-blade channel that is bounded upstream by a conical patch
(wrapped on the same conical surface as the distributor outlet), then across the runner middle axis
C–C, and extends downstream up to the draft tube inlet of radius D–D. The separation of the
made-up turbulence is caused by the strong 3D skewing passage. The geometry is normalized by
the half external diameter of the runner blade, Rref=0.225m. The mean chord dimension L of the
runner blade passage (streamwise dimension) is L/Rref=0.724, the mean blade-pitch dimension
is y/Rref=0.46 and the mean spanwise dimension of the blade passage is z/Rref=2.06 The mean
coming flow velocity at the inlet of the runner domain (B–B) passage is defined as reference
velocity Uref=0.68m/s. The flow Reynolds number is defined as Re=UrefL/� f =1.1×105.

The meshes around the runner blade surfaces are first generated and then the other domains are
generated in turn. The tetrahedral fluid element number of the whole model is 1 957 828 and 11 160
nodes are distributed over one side of the blade surfaces (averaging 90 points in the streamwise
direction and 124 points in the spanwise direction). The nearest wall grid cell is 12 wall units in
the blade-pitch direction and 80 wall units in the other two directions.

The computational boundary conditions are shown in Figure 4 and are presented as following.
A uniform velocity field that is normal at the inflow section is imposed on the distributor inlet
section. The turbulence quantities are prescribed on the inflow section of the distributor by
vortex method [32]. The free outflow condition is specified on the runner outlet (draft tube
inlet). The periodic conditions are imposed on the pitchwise periodic boundary, and noslip wall
conditions are imposed on all solid boundaries, namely the stay vane, guide vane, runner blade
and distributor upper and lower rings as well as on the crown and band surfaces of the runner
blade.

A strategy of varying time interval is adopted during the numerical calculation to speed up
the convergence and ensure computational accuracy. The maximum time step is controlled to
be less than 2.0×10−3T (T = L/Uref as the passing period of the blade passage). The grid
turbulence simulation has progressed to 20T and collection of the sampling data for time statistics
starts from 4T .
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Figure 4. The geometric configuration, computational domain, and boundary conditions. (a) The config-
uration of a blade and (b) the whole configuration of the flow passage.

3.2.2. Numerical results.

3.2.2.1. Statistic characteristics. The time-averaged static pressure coefficients,Cp=2( p̄− p̄out)/
�U 2

ref, along the suction and pressure sides of the blade are shown in Figure 5(a), where p̄out
is the mean static pressure in the draft tube inlet section of radius D–D The time-averaged skin
friction coefficients, Cf=2�w/�U 2

ref, along the suction and pressure sides of the blade are shown
in Figure 5(b), where �w is the wall shear stress. It is seen that the pressure distribution along
the Sc, Sm and Sb lines on the pressure surface shows similar characters. The figure shows that
a short region of reverse pressure gradient occurs from the leading edge to x ′/L=0.18 or so.
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Figure 5. Averaged pressure (a) and skin friction coefficient distribution (b) on blade surface.

The pressure then gradually decreases towards the trailing edge. However, the pressure distribution
along the Sc, Sm and Sb lines on the suction side greatly differs from each other. Along the
Sc, Sm lines, a short region of acceleration is seen at the leading zone of the passage. After a
short decelerated from x ′/L=0.1 to x ′/L=0.25, a high-pressure gradient occurs until the trailing
edge of the blade. The pressure gradient along the Sb is quite different. It is seen that a reverse
pressure gradient occurs from x ′/L=0.2 toward the trailing edge of the blade. The flow direction
may be changed due to reverse pressure gradient, which leads to a low skin friction coefficient,
flow separation and instability. These features are demonstrated and verified furthermore in
Figure 5(b).

Figure 6(a), (b) shows the contours of pressure and velocity distributions in the 3D skew blade
passage, respectively. It clearly shows the space distribution of pressure and velocity which is
useful to help understand the process of flow evolvement. Figure 6(a), (b) shows that there is a
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Figure 6. Time-averaged pressure, velocity, SGS kinetic energy and SGS turbulent viscosity distribution
in blade passage. (a) Pressure; (b) Velocity; (c) SGS kinetic energy; and (d) SGS turbulent viscosity.
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high-pressure zone near the leading edge of the blade in the pressure side and the pressure gradient
is nearly the same along the stream lines in the crown zones. Near the suction surface, a negative
pressure center occurs near the crown, which suggests that there is a strong collective swirling
vortex. It is also seen that the contours of the pressure are relatively mess if near the band zone,
indicating that the strong collective vortex in crown zone is continuous to split into some small
vortex pairs entered into the band zone and the vortex intensity starts to decrease from the leading
edge toward the trailing edge of the blade.

Figure 6(c),(d) shows the contours of time-averaged SGS kinetic energy and SGS turbulent
viscosity distribution in blade passage, respectively. The space distribution of SGS kinetic energy
and dissipation of turbulent kinetic energy demonstrates the mechanics of products and dissipation
of turbulent energy.

3.2.2.2. Temporal evolution. Figure 7 shows the instantaneous iso-surface of spanwise vorticity
in the blade passage at different times. These figures clearly show the unsteady evolvement of
swirling vortex structures. A strong clockwise spanwise vortex is seen in the leading zone. The
vortex is then gradually elongated with time and eventually is broken. As a result, many small
vortex pairs are generated and move into the band zone. The distances between vortex pairs
increase with time and its intensity gradually decreases. Finally, the flow becomes unstable. This
is consistent with the pressure patterns shown in Figure 5(a).

Figure 8 shows the evolution of computational SGS kinetic energy at some points on two
sides of blade (numbered 1–10 in Figure 4(a)). It is seen that the subgrid kinetic energy and its
fluctuation are slightly higher than the subtest kinetic energy and its fluctuation. This demonstrates
the difference of energy transport due to the different eddy scales. Figure 8 also shows that the
SGS kinetic energy varies with spacious locations, indicating that the eddy scales induced by skew
blade are different.

The time variation of homogeneous coefficient Chom(t) is plotted in Figure 9(a). It is seen that
the time-averaged Chom(t) is close to 0.022, which corresponds to a value of the Smagorinsky
constant Cs=0.2. There is no negative value of Chom(t). The local coefficient C(x, y, z, t) at
points 1, 4, 6, 9 is plotted in Figure 9(b), which shows larger fluctuation and more stochastic
compared with the homogeneous coefficient Chom(t), because it is local.

3.2.2.3. Experiments and comparisons. Details of the experimental arrangement and the test
model can be found in Reference [1]. For completeness and convenience, we give a brief
description of the test model. The turbine used for the experiments is a model of a Francis
turbine, A55x. The model runner diameter is 450mm, with 10 blades, 23 guide vanes and 23
stay vanes. The test model is made of hard polyglass with Young’s modulus of 2500MPa,
Poisson ratio of 0.384 and a mass density of 1280kg/m3. The net working water head and
the rotation velocity can be adjusted according to the requirements of experiments. Pressure
sensors, LL-072-25A, were mounted on both the pressure side (numbered 15) and the suction
side (numbered 610) of a blade to record the turbulent pressure signal. The locations of the
sensors are shown in Figure 4(a) in which the pressure sensors were arranged in a way that
they were roughly placed along the streamwise direction. The sampling resolution is 2.5 kHz
for flow.

Figure 10 is the comparison of computed and measured time-averaged pressures. Two simulations
were carried out using the second-order upwind and central difference schemes to discretize
the convective term in the governing equations, respectively. Though the numerical results show

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:600–621
DOI: 10.1002/fld



614 W. WANG ET AL.

(b)(a)

(d)(c)

(e) (f)

Figure 7. Contours of iso-surface of spanwise vorticity in blade passage. From
black to French grey: −110 1/s��z�−30 1/s. (a) t

T =17.66; (b) t
T =(18.07);

(c) t
T =18.48; (d) t

T =18.89; (e) t
T =19.3; and (f) t

T =19.71.
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Figure 8. The evolution of the computational SGS kinetic energy on grid and test level on two sides
of the blade, respectively. (a) Point 1; (b) Point 2; (c) Point 3; (d) Point 4; (e) Point 5; (f) Point 6;

(g) Point 7; (h) Point 8; (i) Point 9; and (j) Point 10.
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Figure 8. Continued.

slight difference using different schemes of discretization for convective term, the numerical (non-
physical) dissipation of two schemes is of the same order of magnitude. In general, the simulated
time-averaged pressures agree well with the measurements with the maximum relative error being
about 8% (point 8 at suction side) indicating that the LES with the dynamical mixed one-equation
subgrid models is reliable in complex turbulence computation.

Figure 11 is the computed and measured time-dependent pressures at the measured points.
The recorded signals were treated with five wavelet decompositions of the DB4 wavelet func-
tion in order to obtain smooth curves for the purpose of comparison. Both the computed and
measured results show that the pressure fluctuation frequency is relatively higher near the band
regions than that near the crown regions, and that of the upstream zones are slightly higher
than that in the downstream zones. This may be ascribed mainly to the difference of the eddy
scales. Large-scale eddies are main collection in the upstream zones of the runner passage
affected by the big attack angle of guide vane, while the small scale eddies are filled in the
downstream flow passage with the collective large vortex structure broken, which agree well
with the vortex structure shown in Figure 7. It is also seen that the amplitude of pressure

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:600–621
DOI: 10.1002/fld



TURBULENT FLOW SIMULATION USING LES 617

0.8
0.00

0.02

0.04

C
ho

m
(t

)

t (s)(a)

0.00

0.04

0.08

0.12

0.16

C
(x
,y
,z
,t

)

t (s)

 point 1  point 4

 point 6  point 9

(b)

1.2 1.6 2.0

0.8 1.2 1.6 2.0

Figure 9. The evolution of the dynamical coefficients: (a) the homogeneous coefficient Chom(t);
(b) the local coefficient C(x, y, z, t).

fluctuation is different between the computation and the measurement, which may be caused
by the difference of boundary condition between the numerical computation and the physical
experiments.

4. CONCLUSION

A computational model is developed for the LES modeling with dynamical mixed one-equation
subgrid model. This model is more robust than the Germano model and is capable of simulating
the transfer of turbulent energy from small to large scales. Furthermore, the velocity scale, k1/2sgs ,
in the mixed models contains some information on the small scales, and the solution of the
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Figure 10. Comparisons of time-averaged computed and measured pressures.
(a) Pressure side; (b) Suction side.

transport equations for ksgs contributes a history effect. Based on the SIMPLEC schemes for the
coupled terms of velocity and pressure, this model is implemented in a 3D finite volume code. Two
numerical examples are simulated. The first one is to simulate the 3D flows over a backward-facing
step. Simulated results were compared with the experimental results [31]. Good agreement between
the simulation and the measurements was obtained for relatively low Reynolds number flows
while a reasonable agreement was achieved for turbulent flow, indicating that the numerical model
presented here can be used to simulate a wide range flow regimes. The second numerical example
is to simulate the complex turbulent flow in a strong 3D skew Francis hydro-turbine passage. The
statistic characteristics of pressure, velocity, SGS kinetic energy and SGS turbulent viscosity are
numerically simulated. The evolvements of spatial–temporal vortex structures, the temporal subgrid
kinetic energy and the subtest kinetic energy are calculated and analyzed. The simulated pressures
on the pressure and suction sides of the blade agree well with the measurements, indicating the
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Figure 11. History comparisons of total pressure at measured points on two sides of blade.

accuracy of the numerical model. The findings from this research improve our understanding of the
mechanism of turbulent flow, energy production and dissipation as well as the turbulent coherent
structure in turbine machines.
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